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ELEMENTARY IMAGE OF THE KOLMOGOROV-GABOR POLYNOMAL IN ECO-

NOMIC MODELING 

 

Abstract. Today, neural networks are actively used in modeling complex nonlinear de-

pendencies. Amid such a rapid growth of interest in this powerful tool for modeling various ob-

jects and processes, research in the natural sciences and engineering, the work on the applica-

tion of neural networks in economics is vanishingly small. This is explained both by the com-

plexity of the modeling tool itself - neural networks, and by the object of modeling - the evolv-

ing economy. 

At the dawn of the development of neural networks, the method of modeling processes us-

ing Kolmogorov-Gabor polynomials (or Wiener series) was considered as an alternative. For 

various reasons, this method lost the competitive battle, and neural networks prevail.  

The article presents a method and technique for constructing an elementary image of the 

Kolmogorov-Gabor polynomial and shows that today it can be quite used as an alternative to 

neural networks in modeling economic processes.  

Keywords: economic and mathematical modeling, nonlinear processes, multidimensional 

dependencies, neural networks, Kolmogorov-Gabor polynomial, N. Wiener series.  
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Introduction  

From the very beginning of the emergence of the task of modeling complex interrelation-

ships, scientists have used mathematical statistics toLSM to solve it, directing their efforts to 

identify causal relationships between variables and to explicitly determine the form of these 

identified interrelationships. This form of interrelationship took the form of one of the elemen-

tary functional dependencies of the indicator y on the factors xi. It was believed that a correctly 

chosen function, if it does not express the mathematical expectation of the process, then it is its 

best approximation.  

The main problem that scientists faced when constructing and using a regression model or 

a set of models was precisely the difficulty of determining the type of functions describing the 

mathematical expectation, since an error made in this case leads to incorrect modeling results. 

In the univariate case, this task is solved with a certain degree of success using correlation and 

regression analysis. But in multivariate dependencies, determining the form and nature of the 

influence of each factor on the result is a very difficult and rarely successfully solved problem.  

Let's demonstrate the complexity of this task with a simple example. Let's generate data 

for a conditional example. Let the influencing factors change as follows: 

x1i = i,   x2i = 0,5x1i+εi = 0,5i+εi,   x3i = x2icos(x1i )
0,1+x1i.  

And now let's generate the resulting feature using the specified three variables by the formula: 
2

1 2 32 0,1i i i iy x x x= + +
   (1) 

We are faced with a nonlinear multifactorial functional dependency, and since it does not con-

tain a random component, we can expect a definitive determination of the form of this dependency. 

We will change i from 1 to 50 and generate data for a hypothetical task based on this. 

Now let's assume that the form of this dependency is unknown to us and, based on the availa-

ble statistical data about the factors and the modeled variable, it is necessary to find this dependen-

cy. The first thing to do is to calculate the correlation matrix. We will obtain: 
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Table 1. Correlation matrix for a conditional example 

 x1i x2i x3i yi 

x1i 1    

x2i 0,8103 1   

x3i 0,9931 0,8674 1  

yi 0,9746 0,8907 0,9823 1 

 

What conclusion will the researcher draw from these data? Since the pairwise correlation 

coefficients are above 0.80, these data should be described using a linear multifactorial model. 

The LSM estimates of such a model based on the available data will give the following form of 

the model: 

1 2 3
ˆ 13,16 5,56 9,67 11,34i i i iy x x x= + − −

   (2) 

It has excellent statistical characteristics, which tell the researcher about its significance. 

However, the obtained model terribly described the original formula (1) and does not corre-

spond at all to the law it describes! And yet, many economists, having received an econometric 

model of type (2), will try to give an economic interpretation to each coefficient obtained, for 

example, that an increase of the third factor by one unit will reduce the result by 9.67 units. 

From the true situation, which is modeled by (1), follows a completely different influence of the 

third factor – its increase will nonlinearly enhance the result. That is, mathematical statistics 

have yielded a result opposite to what is the case. 

If we now take a closer look at the data in Table 1, we can notice that there is a strong and 

almost linear relationship between the first and third factors, as the pairwise correlation coeffi-

cient between them is r = 0.9931. Therefore, the effect of multicollinearity may be present in 

the modeling results. One of these two correlated factors should be discarded when building the 

model. Let it be the factor x1i. 

Then, the econometric model, which takes multicollinearity into account, will look like 

this: 

2 3
ˆ 1,38 4,47 18,79i i iy x x= + −

   (3) 

It also has excellent statistical characteristics, indicating its statistical significance. But it 

is as far from the truth as model (2). And if we now give an economic interpretation to the new 

model (3), we can say that an increase of the third factor by one unit leads to an increase in the 

result by 4.47 units, which is far from the real influence and opposite to the conclusions of 

model (2). 

It is impossible to find the form of the real dependency (1) using methods of mathematical 

statistics. 

These methodological difficulties in applying structural regression models in economic 

modeling have been understood for a long time, but there was no alternative until cybernetics 

appeared. Cybernetics took various steps away from regression, proposing as an alternative the 

'black box' model, into which certain factors xi are fed, and the values yare observed at the out-

put. How the input is transformed into the output is of no interest to anyone. In managing the 

'black box,' the task was set as follows: to select such values of factors xi that the output y ob-

served would be close to a predetermined Y. Methods for selecting optimal values of xi were 

developed in cybernetics. 

In parallel with the tasks of optimal control of complex systems, cybernetics solved an-

other problem – pattern recognition. It differed from the task of optimal control in that, given 

the input parameters xi and known values of the output parameter y, it was necessary to adjust 

the 'black box' so that this correspondence between input and output matched the given pattern 
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Y. Here, the object of adjustment was not the data, but the 'black box' model, or rather – its co-

efficients. 

Scientists proposed various mathematical models of this 'black box,' and over time, the 

model of artificial neurons combined into a single neural network proved to be the most accu-

rate and convenient. Inside the 'black box' - the neural network - when solving the task, a multi-

iterative recalculation of the network's coefficients occurs so that the output result is obtained 

with the specified accuracy. The obtained values of the neural network coefficients are of no 

interest, as they are not statistical characteristics of the process but are parameters of the 'black 

box.' 

With the help of neural networks, many diverse tasks have been solved, and we have 

come close to the task of creating artificial intelligence. However, examples of successful appli-

cation of neural networks in economics are exceedingly rare. 

This can be explained by two main reasons. 

The first is that building and using neural networks requires the specialist to have a deep 

knowledge of several narrowly specialized sections of mathematics and programming. Typical-

ly, scientists engaged in economic research do not possess such knowledge. Therefore, at best, 

they apply templates of existing neural networks to one or another forecasting object. The basis 

for applying such a template is the known number of inputs (factors) and outputs (indicators).  

The second reason is due to the specific properties of the economy as an object of re-

search. The fact is that neural networks were developed as a method of modeling complex ob-

jects operating under conditions of homogeneity, characterized by a finite set of properties and 

features. In contrast, economic processes are mostly heterogeneous and evolving – the set of 

properties and features of these processes changes over time and is not finite. The exception is 

perhaps financial and consumer markets under conditions of stable economic conjuncture. Here 

neural networks show very good results. But such periods of relative stability are eventually in-

terrupted by some external influences on the markets, and the processes become heterogeneous, 

evolutionary, and chaotic. In such situations, neural networks stop working well.  

Thus, the task of modeling complex economic objects is more successfully solved by 

methods of mathematical statistics than by neural networks or their analogs. Therefore, the task 

of creating a simple and understandable alternative to neural networks is relevant.  

 

Materials and Methods 

A neural network consists of a collection of j interconnected neurons, each of which repre-

sents a superposition of linear and non-linear functions:  

 

0

1

ˆ ( )
n

j i i

i

y f a a x
=

= +
   (4) 

Here:: 

ˆ
jy
 - output signal of j-th neuron; 

f – activation function or transfer function;  

ai - weight of the i-th signal (factor); 

xi – i-th component of the input signal or the factor itself; 

i = 1, …, n – neuron input number;  

n - number of neuron inputs;  

a0 – coefficient characterizing the displacement. 

To avoid problems that may arise with the scales of variables when working with neural 

networks, all variables are preliminarily normalized. 

𝑗 
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Two aspects are fundamentally important for the neural network: the form of the function 

f and the structure of the neural network, that is, the number of neurons (4) and their intercon-

nection with each other. 

At the very beginning of the use of neural networks, the computational capabilities of 

their implementation were not high, so the function f was often considered as the possibility of 

activation y = 1 or non-activation y = 0 of the output from the neuron, and in the case when it 

was necessary to quantitatively transform the input values xi, a linear or piecewise-linear func-

tion was used. Today, the logistic (sigmoid) function is most often used, allowing for a nonline-

ar transformation of input signals into output. The logistic is also convenient because its first 

derivative is easily calculated and computed, which is important when estimating the coeffi-

cients of all neurons (4) by numerical methods, since one of the gradient methods [26] is most 

often used for this. 

LSM or other methods of mathematical statistics are not directly suitable for solving this 

task. Indeed, for example, in a simple two-layer neural network, the variables xi are considered 

as inputs to the first layer of m neurons of the network. In each neuron of the first layer (4), they 

are transformed into outputs yj (j = 1, 2, …, m), which are inputs to the second layer neural net-

work. At the output of the second layer, the following is obtained: 

0

1

ˆ ˆ( )
m

j j

j

y f b a y
=

= +
   (5) 

If we now substitute (4) into (5), we obtain the following superposition of functions:  

0 0

1 1

ˆ ( ( ))
m n

j j j ij i

j i

y f b a f a a x
= =

= + + 
   (6) 

Real values are described by this model with some error: 
ˆy y = − ,   (7) 

the minimization of whose squares will give LSM estimates. But it is not possible to directly 

estimate the coefficients of such a simple two-layer neural network in the case of a nonlinear 

form of the transfer function, since the calculation of the gradients of the error function (7) by 

the model coefficients (6) represents a complex task, leading to the need to solve a system of 

complex nonlinear equations. It is significantly easier and more convenient to solve this prob-

lem using numerical methods, most often using the gradient method. 

As can be seen from the simple explanation of the essence of building neural networks, 

their use requires a good knowledge of mathematics and programming skills, as training a neu-

ral network is a multi-iterative procedure with many parameters being estimated simultaneous-

ly, which can only be done using some advanced programming language. 

When a neural network, trained on a sample from the general population, is tested on a 

validation set from this general population, it should give good results. If this does not happen, 

the network is complicated and trained again. And this continues until the network is well 

'tuned'. 

If non-stationary and irreversible processes are modeled, then neural networks demon-

strate their inadequacy. And it is such processes that are many of the processes occurring in the 

economy. Today many scientists are trying to solve this problem by improving neural networks. 

One of such directions is the theory of neuro-Bayesian methods [18, 23], but this theory so far 

cannot boast any tangible results and admits that: 'now this area is only at the very beginning of 

the path and is waiting for new researchers' [19, p. 446]. Some hopes in this direction are 

pinned on recurrent neural networks [20]. In traditional neural networks, it is assumed that the 

input factors and output factors are independent, and recurrent neural networks take into ac-

count the presence of some influence of previous observations on current observations due to 

feedback between some neurons. 
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One of the first publications on this topic among Russian economists is the article by As-

trakhantseva I.A., Astrakhantsev R.G., and Kutuzova A.S. [2]. Having identified potential fac-

tors of inflation in the Russian Federation, the authors conducted a correlation-regression analy-

sis and determined that inflation can be described by two factors: the exchange rate of the dollar 

to the ruble and the growth of citizens' debt excluding currency revaluation. A simple recurrent 

neural network built by them on this data set predicts inflation well for one observation and 

very poorly predicts all subsequent values. 

Physicists Kondratenko V. and Kuprin Y. built a recurrent neural network capable of pre-

dicting the sign of price increases in the foreign exchange market with a probability of success 

just over 50% [13]. For this, they used the logarithm of the ratio of the current price to the pre-

vious price of exchange rates of the American dollar, Japanese yen, Swiss franc, British pound, 

and euro. 

Among the few foreign publications on this topic, several articles can be highlighted. 

Yunze Tao, Xia Sheng presented a method for predicting the exchange rate of the euro to the 

US dollar using a simple recurrent neural network in which the factors were past daily exchange 

rates of the euro and the US dollar [29]. It is difficult to assess how well this network works, as 

no comparison with other forecasting methods is provided in the article.  

Zhiguo Qiu, Emese Lazar, and Keiichi Nakata showed comparative results of using mod-

els based on recurrent neural networks with state tracking, feedforward neural networks, as well 

as VAR vector autoregressions and exponential smoothing models [30]. Six asset return time 

series were modeled over a period of more than 20 years. Recurrent models showed the best re-

sults. 

Ruofan Liao, Petchaluck Boonyakunakorn, Napat Harnpornchai, and Songsak Srioonchit-

ta used a recurrent neural network to predict the exchange rate of the US dollar to the yuan from 

12 other indicators, shifted up to d lags back plus the indicator itself, shifted up to d lag [22]. 

They compared this network with ARIMA and showed that if ARIMA gave an average forecast 

error square of 0.211, then their neural network - 0.010. 

These results are encouraging but not impressive. 

Returning to the origins of the formation of neural networks, it should be noted that the di-

rector of the Institute of Cybernetics of the Academy of Sciences of the Ukrainian SSR A.G. 

Ivakhnenko in the 1970s proposed another path of unstructured modeling of complex objects 

using complex polynomials. In this regard, he proposed an interesting method of decomposing 

many complex tasks, the essence of which can be understood from a simple example [9]. 

Suppose there is a need to build a model of a high-degree polynomial on a small number 

of observations: 
2 3 4

0 1 2 3 4
ˆ

ty a a t a t a t a t= + + + +
   (8) 

It is proposed to divide this polynomial into a system of three series. 

The first row is: 
2

1 0 1 2
ˆ

ty b b t b t= + +
   (9) 

The second row is: 
3 4

2 1 2
ˆ

ty c t c t= +
   (10) 

It is easy to notice that the first row is a model that includes the first three terms of poly-

nomial (8), and the model of the second row includes two other components of this polynomial.  

The coefficients of models (9) and (10) can be easily estimated, for example, using LSM. 

To form the overall polynomial (8), it is proposed to estimate the coefficients of the third row 

model using LSM: 

0 1 1 2 2
ˆ ˆ ˆ

t t ty d d y d y= + +
   (11) 
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Into this model, as you can see, the calculated values of the variable are substituted, which 

are computed according to (9) and (10). What does this mean? If we substitute into (11) not the 

calculated values, but the formulas by which they are obtained, that is, models (9) and (10), 

then we get: 
2 3 4

0 1 0 1 2 2 1 2

2 3 4

0 1 0 1 1 1 2 2 1 2 2

ˆ ( ) ( )

( )

ty d d b b t b t d c t c t

d d b d b t d b t d c t d c t

= + + + + + =

+ + + + +
   (12) 

From where it is easy to determine the relationship between the coefficients of the original 

polynomial (8) and the coefficients of the multi-row system (9) - (11): 

0 0 1 0 1 1 1 2 1 2 3 2 1 4 2 2,   ,   ,   ,   a d d b a d b a d b a d c a d c= + = = = =
   (13) 

Since the multi-row procedure for estimating the coefficients of the polynomial is a linear 

superposition of functions linear with respect to unknown coefficients, the estimates (13) will 

coincide with the LSM estimates applied directly to (9). This decomposition method proposed 

by A.G. Ivakhnenko was suggested for constructing various nonlinear models, and most often it 

was proposed to use a finite polynomial decomposition of the nonlinear dependency into addi-

tive components. 

In 1930, V. Volterra published the work 'Theory of Functionals and of Integral and In-

tegro-Differential Equations' where he derived series that allow the study of systems with soft 

inertial nonlinearities [27]. These series are actively used today in solving technical and engi-

neering tasks of modeling nonlinear processes [16]. In 1958, N. Wiener in the monograph 'Non-

linear Problems in the Theory of Random Processes' published a modification of the Volterra 

series. He proposed a method of approximating a nonlinear dependency, starting with simple 

elements, to which new and new nonlinear terms are successively added: 'Our decomposition 

differs from the usual Fourier decomposition, as we have a countable set of functionals, but the 

overall task remains the same' [28, p. 50]. Today, mathematicians call this decomposition the 

Wiener series, and for the discrete case, this series will take the form: 

0

1 1 1 1 1 1

...
m m m m m m

i i ij i j ijk i j k

i i j i j k

y a a x a x x a x x x
= = = = = =

= + + + +  
   (14) 

The same problem was independently solved in 1956 by A.N. Kolmogorov and in 1961 by 

D. Gabor [7]. Since A.G. Ivakhnenko, who first used series (14), called it the Kolmogorov-

Gabor polynomial, this name prevails in domestic science today, and we will also adhere to this 

naming convention. 

Series (14) is indeed very convenient for modeling nonlinear systems with weak nonline-

arity based on available statistical data. Moreover, like a neural network, it connects the input 

variables xi with the output ywithout defining the nature and form of the relationship between 

them, that is, it does so in an unstructured way, just like neural networks, which allows it to be 

considered as an alternative to neural networks. However, unlike neural networks, the structure 

of the polynomial is fixed and strictly defined. Any researcher with m input variables will al-

ways construct the same polynomial (14). Neural networks can connect variables xi with the 

output y in many ways – they can be single-layer or multi-layer, vary the connections between 

neurons, add recursive connections, etc. This means that the dependency between xi and y can 

be described using neural networks in many ways – better or worse, simpler or more complex. 

With series (14), this relationship can only be modeled in the same way. 

And if we compare (14) with (6), we can notice an important advantage of the polynomial 

over the neural network: it represents a linear function in terms of parameters, whose coeffi-

cients can be easily found by any statistical method directly, without resorting to numerical 

methods, by solving a system of linear equations with unknown coefficients.  

In the 60s and 70s of the 20th centuries, when the polynomial (14) competed with neural 

networks in pattern recognition tasks, calculations were performed on analog machines. These 
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machines consisted of electrical devices that transformed electrical signals similarly to mathe-

matical operations. For example, about the first neural networks, A.G. Ivakhnenko reported: "In 

the first design of the perceptron, automatic potentiometers with servomotors were used as as-

sociating elements. The machine used 512 such potentiometers. They were too large and expen-

sive. Now in the perceptron, so-called biaks are used – magnetic elements with ferrite cores. 

Functionally, biaks reproduce the actions of a two-position polarized relay or trigger [9, p. 159]. 

At that historical moment in the development of computing technology, simple multipliers 

and adders in computers for the use of artificial neurons were simpler and cheaper than nonline-

ar converters for the use of the Kolmogorov-Gabor polynomial, which were also less reliable in 

operation. This predetermined that neural networks became the main tool for pattern recogni-

tion, and the Kolmogorov-Gabor polynomial is only occasionally used for modeling nonlinear 

dependencies. Mainly these are works in the field of engineering sciences [3, 6, 21]. Such 

works are not encountered in economics. Conditionally economic can be considered only the 

article with the results of modeling the relationship between electrical power and a set of tech-

nical and economic indicators of the operation of the Ryazan GRES [4], as well as the article on 

the application of (14) for clustering industrial enterprises [17]. In all these works, not the Kol-

mogorov-Gabor polynomial is used, but the method of sequential approximation to it - MGUA 

as developed by A.G. Ivakhnenko. 

Unfortunately, the Kolmogorov-Gabor polynomial has a significant drawback: as the 

number of i variables x, describing the behavior of the variable y, increases, the number of 

terms N in the polynomial (14) sharply increases. Indeed, if for  i = 2 the number of terms in se-

ries (14) will be equal to N = 6, then for  i = 5 it becomes equal to N = 252. And this is a sharp 

increase in the dimensionality of the problem being solved. 

For example, if modeling the dependence of several variables yj on x, then for i = 5 and j = 

4 we get N = 1008 unknown coefficients of the polynomial. And when using a two-layer fully 

connected feedforward neural network to solve this problem, it is necessary to estimate from 

twenty to forty unknown coefficients. 

Precisely because of the high dimensionality of the problem, this tool is practically not 

used in solving real modeling tasks. Thus, I.I. Sulyaev, mentioning the Kolmogorov-Gabor pol-

ynomial when setting the task of modeling the process of mixing oxygen and air for the oxida-

tion of sulfide copper-nickel raw materials in a metallurgical furnace, pointed out the enormous 

size of this polynomial and subsequently used a neural network [24]. 

Pointing out the enormous dimensionality of the problem with many initial variables, A.G. 

Ivakhnenko proposed a method of step-by-step decomposition of the model - "formation of a 

multi-row system", the essence of which was outlined earlier in (8) – (13). 

For the case of three factors, the full Kolmogorov-Gabor polynomial will be written as 

follows [12]: 
2 2 2

0 1 1 2 2 3 3 4 1 5 2 6 3 7 1 2 8 1 3

3 3 3 2 2 2 2

9 2 3 10 1 11 2 12 3 13 1 2 14 1 3 15 1 2 16 2 3

2 2

17 1 3 18 2 3 19 1 2 3

ŷ a a x a x a x a x a x a x a x x a x x

a x x a x a x a x a x x a x x a x x a x x

a x x a x x a x x x

= + + + + + + + + +

+ + + + + + + +

+ +
   (15) 

At the first stage, it is proposed to use partial (support) polynomials with two factors, each 

of which approximates the modeled indicator ywith its own approximation error εi: 
2 2

1 1 0 1 1 2 2 3 1 4 2 5 1 2 1
ˆy y b b x b x b x b x b x x = + = + + + + + +

   (16) 
2 2

2 2 0 1 1 2 3 3 1 4 3 5 1 3 2
ˆy y c c x c x c x c x c x x = + = + + + + + +

   (17) 
2 2

3 3 0 1 2 2 3 3 2 4 3 5 2 3 3
ˆy y d d x d x d x d x d x x = + = + + + + + +

   (18) 
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Using the method of least squares, one can easily find the coefficients (16) - (18). After 

that, using the calculated values of the variables obtained from (7) – (9) as factors, one can find 

the coefficients of another polynomial using the method of least squares:  

4 4 0 1 1 2 2 3 3 4 1 2 3 4
ˆy y e e y e y e y e y y y = + = + + + + +

   (19) 

And now, substituting (16), (17) and (18) into (19), we get: 
2 2 2 2

0 1 0 1 1 2 2 3 1 4 2 5 1 2 2 0 1 1 2 3 3 1 4 3 5 1 3

2 2 2 2

3 0 1 2 2 3 3 2 4 3 5 2 3 4 0 1 1 2 2 3 1 4 2 5 1 2

2 2

0 1 1 2 3 3 1 4 3 5 1 3 0 1 2 2 3 3

( ) ( )

( ) ( )

( ) (

z e e b b x b x b x b x b x x e c c x c x c x c x c x x

e d d x d x d x d x d x x e b b x b x b x b x b x x

c c x c x c x c x c x x d d x d x d x

= + + + + + + + + + + + + +

+ + + + + + + + + + + 

+ + + + +  + + + 2 2

2 4 3 5 2 3)d x d x x+ +
   (20)  

 If we now compare the resulting expression with (15), we can see that the coefficient a0 

corresponds to a combination of coefficients of the equations: 

0 0 1 0 2 0 3 0 4 0 0 0a e e b e c e d e b c d= + + + +
   (21) 

In the same way, correspondences can be found for other coefficients of the complete 

Kolmogorov-Gabor polynomial (15): 

1 1 1 2 1 4 1 0 0 4 0 1 0

2 1 2 2 2 3 1 4 2 0 0 4 0 0 1

19 4 1 2 1 2 1 2 5 2 0 2 5 0 1 0 6 0 1 5 5 0 2 0 5 1

,

,

...

( ).

a e b e c e b c d e b c d

a e b e c e d e b c d e b c d

a e b c d b c d b c d b c d b c d b c d b c d b c d

= + + +

= + + + +

= + + + + + + +       (22) 

Some scientists suggest considering this correspondence as estimates of the Kolmogorov-

Gabor polynomial. However, (20) is not identical to (15), since in addition to the 20 terms of 

the Kolmogorov-Gabor polynomial, polynomial (20) contains many other terms that are not 

present in (15). If we expand the brackets (20) and group the resulting terms of the polynomial, 

we will obtain a significantly more complex formation. In order not to clutter the description of 

the obtained polynomial with its coefficients, let's assume that in the final polynomial they are 

all equal to one. Then we will get: 
2 2 2 3 3 3 4 4 4

1 2 3 1 2 3 1 2 3 1 2 3

2 2 3 3 4 4 2 2

1 2 1 3 2 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3

2 2 2 2 2 3 2 3 2 4 2 4 3 3 3 2 3 2

1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3

3 3 3 3 3 4

1 2 1 3 1 2

1z x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x

= + + + + + + + + + + + + +

+ + + + + + + + + + +

+ + + + + + + + + +

+ + 3 4 4 4 4 2 4 2 4 3 4 3

1 3 1 2 1 3 1 2 1 3 1 2 1 3

2 3 4 2 2 2 2 3 2 4 3 3 2 3 3 3 4 4 4 2 4 3

2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3

2 2 3 3 4 4 2

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x

+ + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + 2 2 3 3 2

3 1 2 3 1 2 3

2 2 2 2 2 2 2 2 2 3 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

3 3 2 3 2 4 2 2 2 2

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2 1 2 3 2

x x x x x x x

x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x

+ + +

+ + + + + +

+ + + + +
(23) 

This polynomial contains 80 terms, unlike the Kolmogorov-Gabor polynomial (15), which 

has 20 terms. That is, using the approach of A.G. Ivakhnenko, the researcher constructs not the 

Kolmogorov-Gabor polynomial, but a new polynomial with a different structure, which has four 

times more terms. A.G. Ivakhnenko wrote that under certain conditions "... the coefficients of 

non-existent real connections turn out to be zero (or very small)" [11, p. 177]. However, it 

turned out that this is not the case: "Testing the classical GMDH (Group Method of Data Han-

dling) by solving control tasks with artificially formed initial data shows that its selecting abili-

ties are not high enough: in some examples, arguments not included in the formula defining the 

process were in the list of arguments of the model of the process" [4, p. 39]. 

A.G. Ivakhnenko later abandoned the idea of multi-stage estimation of the coefficients of 

the Kolmogorov-Gabor polynomial as a whole and considered another task - the sequential 
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complication of models, starting with reference polynomials, and gradually complicating the 

form of the model, approaching the form of the full Kolmogorov-Gabor polynomial, but not 

reaching it. At each stage of complicating the model, its statistical characteristics (for example, 

the variance of the approximation error) are evaluated, which are compared with the same char-

acteristics of less complex models. The process of complicating the model stops when the 

measured statistical characteristic ceases to improve. This method was named by him "Group 

Method of Data Handling" (GMDH) and it is used today in solving some practical problems [1, 

19], including in combination with neural networks [13, 15]. 

Research has shown that the Kolmogorov-Gabor polynomial in terms of accuracy can ac-

tively compete with neural networks used in economics, especially today with the availability of 

different computational capabilities than fifty years ago [26], but for this, an effective method is 

needed to overcome the "curse of dimensionality". The Ivakhnenko method (16) – (22) does not 

solve this problem. 

A simple method for constructing the full Kolmogorov-Gabor polynomial, which over-

comes the "curse of dimensionality," is outlined below. 

Let's consider this method first on the example of the dependence of y on three factors x1, 

x2, and x3 (15), and then make the necessary generalizations. 

At the first stage, for example, using the method of least squares, it is necessary to find 

the coefficients of a simple linear model that includes all factors: 

0 1 1 2 2 3 3ŷ b b x b x b x = + + +
   (24) 

And at the second and last stage, the same least squares method should be used to estimate 

the coefficients of the cubic polynomial, substituting the calculated values into it as a factor 

(24): 
2 3

0 1 2 3
ˆ ˆ ˆ ˆ( ) ( )y c c y c y с y  = + + +

   (25) 

It’s all. The model is built. If we now substitute (24) into (25), we get: 

2 3

0 1 0 1 1 2 2 3 3 2 0 1 1 2 2 3 3 3 0 1 1 2 2 3 3
ˆ ( ) ( ) ( )y c c b b x b x b x c b b x b x b x с b b x b x b x= + + + + + + + + + + + +

   (26) 

Opening the brackets and grouping, we obtain complete correspondence of the structure of 

the polynomial (26) to the structure of the Kolmogorov-Gabor polynomial (15) - it contains ex-

actly 20 terms. 

Now we can find the correspondence of coefficients (25) - (26) to the coefficients of the 

Kolmogorov-Gabor polynomial (15): 
2 3

0 0 1 0 2 0 3 0

2

1 1 1 2 0 1 2 3 0 1

19 3 1 2 3

,

2 2 ,

...

2 ( )

a c c b c b c b

a c b c b b c c b b

a с b b b

= + + +

= + +

= + +
   (27) 

It should be noted that with such a simple method, we will not obtain the true values of 

the polynomial coefficients. The least squares estimate (LSE) applied directly to the Kolmogo-

rov-Gabor polynomial (15) and the LSE applied to the proposed method of stepwise decomposi-

tion (25) - (26) will differ from each other. This is easily understood because, in the first case, 

20 independent coefficients are estimated, while in the second case, 8 coefficients are estimat-

ed, of which only 4 coefficients of the linear multifactor model (25) are completely independent 

of the other coefficients. 

Therefore, a simplified model of the Kolmogorov-Gabor polynomial is obtained, which 

we will call the "elementary form" of the Kolmogorov-Gabor polynomial. 

Is it possible to obtain a more accurate representation of the Kolmogorov-Gabor polyno-

mial? Yes, it is. 
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In relation to the task at hand, the process of constructing such a more complete represen-

tation will consist of three stages. 

At the first stage, a multifactor linear model (24) is constructed. 

At the second stage, a multifactor nonlinear quadratic model is constructed:  
2 2 2

0 1 1 2 2 3 3ŷ c c x c x с x = + + +
.      (28) 

And based on these two models, the coefficients of the final model are estimated:  
2 3

0 1 2 3 4
ˆ ˆ ˆ ˆ( ) ( )y d d y d y d y d y   = + + + +

   (29) 

After substituting (24) and (28) into (29) and grouping the terms, the image of the Kolmo-

gorov-Gabor polynomial is obtained again, in the construction of which not 4, but 8 independ-

ent coefficients (24) and (28) are estimated, as well as five dependent coefficients (29). Of 

course, the new image will be somewhat more accurate than the elementary image (26), and at 

the same time, the estimation of its parameters is still simpler than the direct estimation of the 

coefficients of the Kolmogorov-Gabor polynomial (15). The feasibility of using the elementary 

or full images of the Kolmogorov-Gabor polynomial is determined by practical needs. 

This simple method of constructing images of the Kolmogorov-Gabor polynomial can be 

extended to the case of any number of variables xi, i=1, 2, …, m. For the elementary image of 

the Kolmogorov-Gabor polynomial of degree m we obtain: 

 

0 1 1 2 2

2

0 1 2

ˆ ... ,

ˆ ˆ ˆ ˆ( ) ... ( ) .

m m

m

m

y b b x b x b x

y c c y c y с y

 = + + + +


  = + + + +    (30) 

As can be seen, it is necessary to estimate step by step (m+1) unknown coefficients, which 

is a routine task. Therefore, the "curse of dimensionality," which A.G. Ivakhnenko repeatedly 

pointed out, is completely overcome, and with the help of the indicated method, an elementary 

image of the Kolmogorov-Gabor polynomial can be constructed for any m. 

The system (30) can be represented in a more compact mathematical form: 

0 0

1 1

ˆ ( )
m m

j

j i i

j i

y b b a a x
= =

= + + 
   (31) 

If a researcher is interested in a more accurate approximation to the Kolmogorov-Gabor 

polynomial, then its full image at xi, i=1, 2, …, m will be formed like this: 

0 1 1 2 2

2 2 2

0 1 1 2 2

1 1 1 1

0 1 1 2 2

2 2 1

0 1 2 2 1

ˆ ... ,

ˆ ... ,

...

ˆ ...

ˆ ˆ ˆ ˆ ˆ ˆ( ) ... ( ) ... .

m m

m m

m m m m

m m

m m m

m m

y b b x b x b x

y c c x c x c x

y w w x w x w x

y z z y z y z y z y z y

− − − −

− −

+

 = + + + +

 = + + + +





= + + + +

   = + + + + + + +    (32) 

Research conducted on numerous hypothetical and real examples confirms the conclusion 

that the elementary image of the Kolmogorov-Gabor polynomial models various nonlinear pro-

cesses only slightly worse than the full image of this polynomial. Since the Kolmogorov-Gabor 

polynomial is suitable for describing dependencies with weak nonlinearity [5], which most of 

the nonlinear multifactor economic processes are, the elementary image can be used as the pri-

mary model for describing economic nonlinear dependencies. 

A.G. Ivakhnenko, having defined the Kolmogorov-Gabor polynomial as a certain limit, 

believed that there is no particular sense in reaching it, since the partial polynomials (the first 

parts of the Kolmogorov-Gabor polynomial) can cope with the task of modeling nonlinearity 

quite successfully and there is no need to "multiply entities beyond necessity." To find a model 

of optimal complexity, he proposed the "Group Method of Data Handling" (GMDH), which in-
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volves the sequential complication of the model, following the structure of the Kolmogorov-

Gabor polynomial for this set of variables [11, pp. 46 - 47]. 

It is quite possible that the elementary image of the Kolmogorov-Gabor polynomial may 

also be excessively complex for the modeled object, and therefore it also makes sense to find a 

polynomial of optimal complexity through the sequential use of partial elementary images, 

starting with the simplest linear image. 

For this, the first equation of system (30) is initially constructed - a multifactor linear 

model, which is considered as a partial image of the first-degree polynomial. The coefficients 

found for this model are the basis for calculating the variance σ1
2. 

Then, the coefficients of the partial image of the second-degree Kolmogorov-Gabor poly-

nomial are estimated, which has the form: 
2

2 02 12 1 22 1
ˆ ˆ ˆy c c y c y= + +

.   (33) 

For it, the variance σ2
2 is also calculated.  

If σ1
2 ≤ σ2

2, then complicating the polynomial is pointless, and a simple linear multifactor 

model should be used for modeling. However, if this condition is not met and a reduction in 

variance is observed, the process of complicating the polynomial image continues, and a partial 

image of the third-degree polynomial is constructed: 
2 3

3 03 13 1 23 1 33 1
ˆ ˆ ˆ ˆy c c y c y с y= + + +

   (34) 

and its variance σ3
2 is estimated. It is compared with the previous variance σ2

2. 

If the condition σ2
2 ≤ σ3

2 is satisfied again then the model becomes more complicated until 

a complete elementary image of the Kolmogorov-Gabor polynomial is constructed: 
2

0 1 1 2 1 1
ˆ ˆ ˆ ˆ... m

m m m m mmy c c y c y с y= + + + +
   (35) 

with dispersion σm
2. 

 

Results and Discussion 

Let's demonstrate with an example how this procedure can be used to select the optimal 

image of the Kolmogorov-Gabor polynomial. Suppose that for some research purposes, it be-

came necessary to model the dependence of the number of divorces in the Russian Federation 

from 1999 to 2022 based on five factors: population size, birth rate, GDP per capita, cost of one 

square meter of housing, as well as the number of marriages and divorces. These data can be 

taken from the open statistics of the Russian Federation and are not provided here to save space.  

Since a nonlinear dependence of one indicator on six is being modeled, the full Kolmogo-

rov-Gabor polynomial that could be constructed from these data should contain 954 coefficients 

that need to be estimated from the available statistical data. Constructing such a polynomial is a 

complex task. However, constructing an elementary image of this polynomial is a simple task. 

Let's find the partial image of the Kolmogorov-Gabor polynomial of optimal complexity using 

the procedure described above. 

The linear multifactor model of this dependence has the maximum variance of all, which 

we will take as 100%. How the variance of the approximation error of this dependence changes 

with the complication of the partial images of the Kolmogorov-Gabor polynomial is shown in 

Table 2. 

 

 Table 2. Change in the variance of the approximation error with a change in the complexity of 

the elementary image of the Kolmogorov-Gabor polynomial 

 

View of the elementary image of the Kol-

mogoro-va-Gabora polynomial 

Approximation error variance, % of maximum 

variance 

Particular elementary image of a polynomi- 100,00 
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al of a first degree 

Particular elementary image of a polynomi-

al of a second degree 
98,78 

Particular elementary image of a polynomi-

al of a third degree 
95,62 

Particular elementary image of a polynomi-

al of ta fourth degree 
82,07 

Particular elementary image of a polynomi-

al of a fifth degree 
72,83 

Elementary image of a polynomial 72,84 

 

The model of optimal complexity for the considered example is a partial elementary im-

age of a fifth-degree polynomial. In the artificial neuron (4), the first stage involves a linear 

convolution of the input variables into a single parameter s, which is then transformed into the 

output y through the transfer function f(s) at the second stage. 

In the elementary image of the polynomial (31), the first stage also involves a linear con-

volution of the same input variables into the calculated value y1. However, here, unlike the neu-

ron model, the first adjustment of the image occurs when the function of the discrepancy be-

tween the result of the linear convolution and the actual value y is minimized. The second stage 

involves "fine-tuning" the image in the form of a simple power series. 

The strength of neural networks is determined by the fact that its neurons are intercon-

nected according to the principle: the output from one neuron simultaneously becomes the input 

to the next neuron (or several subsequent neurons). The number of neurons is determined by the 

researcher, and by varying them, the researcher can complicate the network until it begins to 

describe the modeled dependence between input and output in the best way. 

Elementary images of the polynomial can also be combined into a certain network when 

the output from one elementary image of the polynomial simultaneously becomes the input to 

the next elementary image of another polynomial (or several subsequent elementary images of 

polynomials). Then a network of polynomials is formed, which describes the dependence be-

tween input and output data differently and with different accuracy than a neural network. Let's 

call such a network polynomial. 

It is important to note one very important difference between the polynomial network and 

the neural network. In the neuron model, only the form of the transfer function f(s) can change. 

It can be logistic, linear, piecewise-linear, or hyperbolic tangent. Other types of transfer func-

tions in the neuron are rare and can be called exotic. But all these transfer functions model the 

same type of sigmoidal nonlinear transformation: linear and piecewise-linear functions some-

what worse, logistic and hyperbolic tangent better. Replacing the type of transfer function dur-

ing the training process is impossible – the type of transfer function determines the mathemati-

cal algorithms for training the network. 

In the model of the elementary image of the polynomial, the fine-tuning function does not 

necessarily have to represent the full elementary image of the Kolmogorov-Gabor polynomial. 

These can be partial elementary images, ranging from a simple linear to a full elementary image 

of the polynomial. When training such a network, you can change these very fine-tuning func-

tions – complicating them from simple to full or vice versa – simplifying them from full to sim-

ple. Thus, polynomial networks acquire an additional training tool without changing the net-

work structure. 

What should we expect from the new polynomial network compared to neural networks? 

Since the computational power of an artificial neuron is significantly lower than the computa-

tional power of the elementary image of the polynomial, more accurate modeling results can be 

expected from the polynomial network. 
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Let's confirm this statement with a simple example. Let's build a neural network and a 

polynomial network based on data from 1990 to 2022 about the GDP of the United Kingdom (y) 

depending on the gross capital accumulation (x1), the size of the economically active population 

(x2), expenditures on scientific research and development (x3), and the size of the UK's GDP for 

the previous period (x4). 

Since the influence of the first three factors on the indicator is approximately the same, 

and the influence of the GDP of the previous period on the current value is somewhat different, 

let's build a neural network and a polynomial network in such a way: 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graphical model of neural network and polynomial network used 

 

Here, for the neural network, each circle represents an artificial neuron, and for the poly-

nomial network – an elementary image of the Kolmogorov-Gabor polynomial. We have before 

us a simple two-layer feedforward model, the complexity of which is optimal for the considered 

example. Since after normalization the original data become both negative and positive, the 

transfer function of the last neuron was represented as a hyperbolic tangent, which allows work-

ing with negative values. 

Let's include in the list of models for comparison of the neural and polynomial networks 

also an elementary image of the Kolmogorov-Gabor polynomial. The comparison results are 

presented in Table 3. 

 

Table 3. Results of approximation of UK data (1990 – 2020) 

Model type 
Neural 

network 

Elementary image of the Kolmogorov-

Gabor polynomial 

Polynomial 

network 

Average sum of 

squares 
0,01388 0,00865 0,00846 

 

As can be seen from the table, the neural network gave the worst results out of the three 

models, while the network of elementary images of the Kolmogorov-Gabor polynomial gave the 

best result. This, of course, does not mean that neural networks will always be worse than poly-

nomial networks. Moreover, it was previously discussed that recurrent neural networks are best 

suited for modeling economics, not feedforward networks. But our task was not to build the 

best model with the available data, but to compare the neural network and the polynomial net-

work. And the given example suggests that polynomial networks can be a worthy alternative to 

neural networks, and if necessary, polynomial networks can also be made recurrent.  

But another conclusion follows from the example: the elementary image of the Kolmogo-

rov-Gabor polynomial showed very good approximating properties. Its average sum of squares 

of approximation error is less than that of a simple neural network and slightly worse than that 

of a polynomial network. This once again confirms the conclusion that in a sufficiently large 

number of cases of modeling nonlinear economic interrelations, the elementary image of the 
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Kolmogorov-Gabor polynomial copes well with this task, and it is possible to do without form-

ing a polynomial network. 

 

Conclusions. 

The elementary image of the Kolmogorov-Gabor polynomial, presented in this article, is 

quite simple to construct based on existing statistical data, and its coefficients can be estimated 

for a fairly large number of influencing factors without compromising the dimensionality of the 

problem. It can flexibly change depending on the modeled process, as partial elementary images 

of the polynomial of a lower degree than the full elementary image can be used instead of its 

full form. 

Even though elementary images of the Kolmogorov-Gabor polynomial model various 

nonlinear dependencies very well, a polynomial network like neural networks can be created 

from them to model even more complex dependencies. The question of which networks are bet-

ter to use for economic modeling - neural or polynomial - requires further research. 

To use neural networks for modeling economic dynamics, it is necessary to complicate 

them to the form of recurrent networks. This is not required with the elementary image of the 

Kolmogorov-Gabor polynomial. Moreover, in the elementary image of the Kolmogorov-Gabor 

polynomial, the influence and role of each coefficient are easily determined, unlike the parame-

ters of a neural network. This means that both Bayesian methods and various adaptive methods 

successfully used in economic forecasting, such as the method of stochastic approximation [25], 

can be applied to them. 

Interest is the use of the elementary image in the form of autoregressive dependence - 

when, in this image, instead of input factors xi, previous values of the modeled indicator yt, yt-1, 

yt-2, ..., yt-τ are used. In this case, it opens up the possibility of simple construction of unstruc-

tured nonlinear autoregressions. Their use in process analytics is limited, but in predictive ana-

lytics, they can be indispensable. 

Summarizing all the above, it should be concluded that the introduction of the elementary 

image of the Kolmogorov-Gabor polynomial into scientific circulation opens new interesting 

prospects for economic researchers in the field of economic modeling. 
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