
1.9. Confidence limits of a complex random variable 

     We consider the problems and tasks of constructing econometric models exclusively to the 

conditions of reversible processes - random and normally distributed. And this means that the 

researcher is dealing with sample values of random variables by which he judges the general 

population as a whole. Since sample values are being evaluated, it is necessary to determine how 

much these sample values can be trusted, that is, to assess how close they are to their true value, 

namely, to the mathematical expectation. 

     It is clear that if the researcher is faced with the task of studying a simple stationary process 

of a random real variable, the one which is represented by some sample from the general 

population, then, assuming the normal distribution of this variable Yi, its arithmetic mean should 

be calculated first: 
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and, having calculating the variance of the actual observations` deviations from this mean σ2, it is 

possible to determine the interval in which the true value of Y is located:  
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      Here tα is the value of the Student's t-statistics. 

     As can be seen from (2.8.2), the confidence limits for real one-dimensional variables are a 

segment on the numerical axis, within which random variables can be located with a given 

probability. 

     If, instead of the real case, we consider a complex-valued variable, then the course of 

reasoning should not, at first glance, be violated – the arithmetic means for a complex random 

variable are calculated (which is identical to the arithmetic means calculation for the real and 

imaginary parts separately), variances are determined for them, after which, using the standard 

approach (1.9.2), the confidence limits are determined. Then the confidence limits of the two 

components values of a random complex variable should be defined as follows: (1.9.3) 
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     But the meaning of this method of determining the confidence limits of a complex random 

variable will be revealed if it is written as a system of two conditions for changing the 

confidence limits separately for the real and imaginary parts: 
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     It clearly follows from this that on the complex plane of the random complex variable, the 

confidence region will be a rectangle outlined by the sides determined by the confidence limits 

(1.9.4), and the sides of this rectangle being parallel to the axes of the complex plane. The center 

of this rectangle, and hence the confidence region in the form of a rectangle, will be a point on 

the complex plane determined by the coordinates of the arithmetic mean of the complex random 

variable  
( , )r iy y

.  

As it has been shown in paragraph 1.3 of this monograph, the confidence region of a 

complex random variable should be a scattering cloud of acceptable values, and not a rectangle. 

In addition, this cloud should have the shape of an ellipse, the axes of which are parallel to the 

axes of the complex plane only if the real and imaginary parts of the complex variable do not 

depend on each other. And in the case of their dependence on each other, and this is the case that 

we are considering, the axes of the scattering ellipse will not be parallel to the axes of the 

complex plane (Fig. 3). 

Thus, the procedure for finding confidence limits using the rule (1.9.3), which at first 

sight seems correct, turns out to be a very rough approximation to reality and it can be used only 

for the purpose of finding very approximate boundaries of the confidence region. 

 Therefore, the standard approach, which seems to be so obvious, turns out to be wrong. 

For scientific and practical research, it is necessary to use a confidence region, which represents 

an ellipse, inside of which there are those points that enter the confidence region, and outside of 

which there are points that go beyond the confidence region. 

     Let us use the scattering ellipse equation. With regard to our problem, the confidence region 

must be inside this ellipse, that is, the following condition must be met: 
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     Here sα,n  is some number defining the limits of the confidence region. This number depends 

on the confidence probability level α and the number of degrees of freedom n 

     For sample values, when instead of mathematical expectations we know their estimate - the 

arithmetic means and sample variance values, the equation of the confidence region ellipse of the 

complex random variable will look like this: 
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     We failed to find an analytical relationship between sα,n  and tα, and this will be the task of our 

further research study. But, since modern computing technology allows to perform numerous 

simulation experiments as well as computer tests, this approach makes it possible to find a 

tabular relationship between them. Table 1.4 shows the recommended values of  sα,n depending 

on the of confidence probability level  α and the number of degrees of freedom n, which were 

obtained during such machine experiments. 

                                                                                            Table 1.4.  

                                                           Critical points of distribution sα,n 

 

 

Number 

of degrees 

of 

freedom n 

Significance level α 

0,10 0,05 0,02 0,01 

1 19,908 80,645 506,256 2028,846 

2 2,842 6,163 16,194 32,802 

3 1,381 2,528 5,153 8,526 

4 0,907 1,546 2,812 4,233 

5 0,673 1,100 1,536 2,707 

6 0,538 0,857 1,409 1,966 

7 0,477 0,696 1,125 1,531 

8 0,384 0,593 0,935 1,254 

9 0,335 0,511 0,795 1,056 

10 0,298 0,452 0,692 0,914 

11 0,270 0,403 0,617 0,806 

12 0,244 0,366 0,552 0,716 

13 0,224 0,333 0,502 0,647 

14 0,207 0,305 0,458 0,592 

15 0,191 0,284 0,423 0,544 

16 0,180 0,264 0,392 0,502 



17 0,168 0,247 0,367 0,467 

18 0,158 0,232 0,342 0,437 

19 0,150 0,218 0,323 0,409 

20 0,143 0,208 0,305 0,387 

21 0,134 0,197 0,289 0,364 

22 0,129 0,186 0,274 0,346 

23 0,122 0,177 0,260 0,329 

24 0,117 0,170 0,248 0,314 

25 0,112 0,163 0,238 0,299 

26 0,108 0,157 0,228 0,286 

27 0,104 0,150 0,218 0,274 

28 0,100 0,145 0,209 0,263 

29 0,096 0,140 0,202 0,254 

30 0,095 0,138 0,199 0,250 

40 0,094 0,136 0,195 0,243 

60 0,093 0,133 0,190 0,236 

120 0,092 0,131 0,186 0,229 

 

      Let us show how to use this table and the conditions (1.9.6) on a specific example.  

     We have at our disposal data on the results of daily quotations on the world commodity 

exchanges of two commodities - Brent crude oil and natural gas from January 4, 2010 to August 

9, 2013. Since these two products reflect the situation on the world market of organic fuel, they 

can be represented as one random complex variable:  
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where yrt  is the price for a barrel of Brent crude oil, and  yit is the price of a cubic meter of 

natural gas. 

     Since the dimensions and scale of these variables are different, they must be reduced to the 

same dimension and to the same scale. The easiest way to do this is to divide each value of value 

series of the price for a barrel of oil by this indicator of the first observation value dated January 

the 4th, 2010, and each value of value series of the gas price to divide by the first value of the 

gas price dated January the 4th, 2010. Then dimensionless quantities comparable both to each 

other and in scale will be obtained. 

     For the obtained series of more than 900 observations, the arithmetic mean has been found, 

which is equal to:  

 
1,259 0,643rt ity iy i+ = +
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For the same series, the variances and their standard deviation (SD) have been calculated, 

which are equal to: σr=0,00616 and σi=0,00427. The pair correlation coefficient between the real 



and imaginary parts of the complex random variable has also been calculated, which turned out 

to be equal to r=-0,57001. This, by the way, once again reiterates our conviction that such 

economic indicators, combined into one complex variable, in no case can be considered as 

independent of each other and the variance of such a complex random variable should be 

considered as a complex value. 

     Now it is possible to substitute these values into the condition (1.9.6) and to determine the 

region of confidence limits for the values of this series of complex random variable:  
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Let us find the answer to such a question - whether the number (1.40+i0.80) falls into the 

confidence parameter region with a probability of 0.95? 

To answer this question, the specified values of a complex random variable should be 

substituted in (1.9.9) and the value of the left side of the inequality should be calculated. Let us 

do this. As a result of calculations, the number s = 2831.366 was obtained. It is significantly 

higher than the critical value, the one which, as can be seen from Table 1.4, for more than 900 

observations and the significance level α=0,05 is equal to sα,n=0,131. Therefore, the specified 

number (1,40+i0,80) goes beyond the range of confidence parameter. 

Now let us find the answer to another question – whether the number (1,26+i0,64) falls 

into the range of confidence parameters with the same probability of 0.95? 

      Substituting the values of this complex number in (1.9.6) and calculating the value of s (the 

left side of the inequality (1.9.6)), we obtain s=0,018. It can be seen that the calculated value of 

the left side of the inequality is less than the critical one and the inequality is satisfied: s < sα, 

n=0,131. Therefore, the number in question (1,26+i0,64) is inside the confidence region. 

     Thus, the proposed procedure for determining confidence limits for a complex random 

variable can be used for scientific and practical research in the field of complex-valued 

econometrics. 

     It can also be used to estimate the confidence limits of other sample complex variables, for 

example, complex coefficients of regression models. 

We will not consider the issue of estimating the confidence limits for the complex coefficient of 

pair correlation here, realizing that the approach for estimating the confidence limits of a 

complex random variable, considered in these paragraphs, is universal, and it can also help to 

estimate the confidence limits of sample values of the complex coefficient of pair correlation. 


